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Abstract

The redistributionofintrinsicquantum noisein the quadraturesof the fieldgenerated

ina sub-thresholddegenerateopticalparametricoscillatorexhibitsinterestingdependences

on theindividualoutputmirrortransmittances,when theyaxeincludedexactly.We present

here a physicalpictureof thisproblem,based on mirrorboundary conditions,which is

validforarbitrarytraasmittancesand so appliesuniformlyto allvaluesof the cavityQ

factorrepresentinginthe oppositeextremesperfectoscillatorand amplifierconfigurations.

Beginningwith a classicalsecond-harmonicpump, we shallgeneralizeour analysistoapply

tofiniteamplitudeand phasefluctuationsofthepump.

1 Introduction

A degenerateopticalparametricoscillator(DOP0) has longbeen considereda nearlyidealsqueez-

ing device when operated just below threshold. The quantum fluctuationsof the generated

sub-harmonic fieldare ratherimmune to spontaneousemission sincethe two-photon transition

governingthe parametricdown-conversionprocessseesno resonant intermediatelevels.

Nearly allpriorwork dealingwith thisproblem [1,2,3]has been limitedto the situationin

which the DOPO cavityisnearlyperfect.In a generalapproach [4,5]developed recentlyby the

author and Abbott, which is based on the exact treatment of mirror boundary conditions,it

has become possibleto discusscavityproblems in quantum opticsfor the entirerange of cavity

transmissionspossible.In the presentDOP0 context,thisapproach thus permits the extreme

limitsofa single-passamplifier(cavitytransmission-,100%) and ofa nearlyperfectDOPO cavity

(cavitytransmission---,0%),and allintermediate-Qoscillatorconfigurationsto be treatedon the

same footing.By employing thisviewpoint(whichmay be viewedas a generalizationofCollettand

Gardiner'sapproach [2]),we alsodevelop a physicallyinsightfulpictureof the generalsqueezing
w
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problem, one which emphasizes the correlations of the input, output, and intracavity fields that

govern the relationship of intracavity and output field fluctuations. Any reference to modes is

altogether avoided here. _ .....

After treating the DOPO problem with a perfectly monochron_tic pump, we shall model real-

istic experiments in which the pump field has finite amplitude and phase fluctuations. Although

any amplitude noise of the pump has a relatively minor impact on the squeezing of the sub-

harmonic signal field, pump phase diffusion eve_ when it is tracked can cause a severe degradation

of that squeezing. More detailed discussions of this problem will appear elsewhere [6].

2 Mathematical Formalism

A descriptionofthe problem at hand thatcoversthe whole gamut of cavitytransmissionfactors

isnecessarilymultimode in character.We avoid allreferenceto cavitymodes by writingthe

fullyquantizedsignalfieldinsidethe cavityin terms of itsrightward(positive-z)and leftward

(negative-z)propagatingparts.For the positive-frequencypart,thisdecompositioniswrittenin

the Heisenberg picture(HP) as

E¢+_(_,t) = (,_+(_.,t) •'_"+ ,__(z,0,_-'_'),_-'n'', (1)

in which the operatorsel(z,t)have expectationvaluesthatare assumed slowlyvaryingin space

and time on the scaleofthe centralwavelength 2_r/_ and period21r/fro.

The parametricinteractionof E(+)(z,t)with an intensequasimonochromatic isdescribedvia

the interactionHamiltonian (alsowrittenin HP) ina cavityoflengthI filledwith the parametric

medium:

, _ • t e2_(z,t)]dz Hermitia_n Conjugate (2)3Axc, ,,...., [dCz.,)+ +HDoPo- T

The complex pump amplitudee_,,p isat most slowlyvaryingintime. The constantsA and X¢2)
are the cross-sectionalareaof the cavityand nonlinearsusceptibility,respectively.The notation

used isthe same as in Ref. [7].We may writethe equationsof propagationfore_ (z,t)in the

slowly-varyingenvelopeapproximation as

,k L
,,(,,t)= c3)

in which the nonlinearpolarizationwaves p_,_(z,t)drivingthe parametricinteractionare given

by a functionaldifferentiationofthe quadraticinteractionHamiitonian (2):

pNL( z, t ) = -_( d_/ d_e_(z, t ) ) H_oPO (4)
= -_x,'_',,.,_,_(=,t).

Thus,on combining (3) and (4), we have the followinggeneralizationofthe single-modeequations

describingthe parametricamplificationprocess:
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Fig. I. The DOPO Cavity with End Mirrors at z = 0 and z = I.

To complete the formalism, we supplement Eq. (5) with boundary connections of the intra-

cavity el(z, t) fields with the input vacuum fields. These connections axe

e+(o,o - -_e-(O,O+ _e_'°(o,o; (6)
e_(t, t) = -_'e+(t, t) + Pe_'°(t,t),

in which e_'_ are the two traveling pieces of the vacuum field entering the cavity through its
mirrors at z = 0 and z = l with inside-to-outside reflection and transmission coefficients (-_, t)

and (-F', P) respectively (see Fig. I).

3 The Parametric Amplifier Problem

Without the cavity mirrors, the oscillator reduces to the amplifier configuration in which the two

traveling parts e+ and e_ axe not coupled to each other. We may therefore concentrate on only

one of them, say the e+-field.

Furthermore, for simplicity, we shall assume in this section that the pump has no amplitude
and phase randonmess, so that it is strictly monochromatic. For this case, one may assume without

any loss of generality that q is real and positive, for any constant nonzero phase ¢_qof q may be

scaled out by redefining e+(z, t) to carry a constant phase factor exp (i_q/2):

e+(z, t) --. e+(z, t) •i_0n, (7)

without altering the physics.

By adding to Eq. (5) and by subtracting from it its Hermitian conjugate, one obtains the
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following pair of uncoupled equations for the quadratures of e+:

( ) (0 I0)_z+c_a I t9 X+(z,t)=qX+(z,t); _z+c_ Y+(z,t) : -qY+(z,t), (8)

whe oX÷(.,,): ½ + V+(.,,): (.+(.,,)- ,h.
_'/2 out-of-ph:e quadratures. The solution of Eqs. (8) b straightforward in terms of the retarded
time variable, r = t - z/c:

X+(z,t) = X+ (O,t - z/c)e"; Y+(z,t) = I"+ (O,t - zlc)e-S'; (9)

which represents a phase-sensitive amplification process characteristic of the parametric interac-

tion. These solutions are entirely equivalent to the following time-evolution equations

X+(z,t) = X+(z-ct, O)e'd; Y+(z,t) ffi Y+(z-ct,O)e -'d. (10)

The linear relationships of Eqs. (9) or (10) indicate that both the expectation value and fluctu-

ations about it of the X+-quadrature (Y+-quadrature) of the signal field amplify (attenuate) by

the same factor. This statement, valid both classically and quantum-mechanically, clearly implies

that any noise initially present in the signal is stretched along the X-quadrature and shrinks along

the Y-quadrature, as shown in Fig. 2. It is in this way that quadrature squeezing comes about in

a parametric amplifier.

4 The Parametric Oscillator Problem

Our treatment of the .parametric oscillator builds upon the simple amplifier analysis presented in

Sec. 3 by limiting z to lie between 0 and t and adding mirrors at z = 0 and at z -- t, which serve

to connect e+ and e_ and the input vacuum fields via (6). As in Sec. 3, we restrict our analysis

here to a perfectly monochromatic pump wave for which Eqs. (9) describe the interaction of the

e+ wave with the medium. Similar relations may be written down for the quadratures of the e_

-field (integrated backwards from z = t):

X_(z,t) = x_ (t,t - (t - z)/c)e,(t-'); (ll)
Y_(_,t) = Y_(t,t - (t - z)/c) e-'(_-')

Since we are ultimately interested in calculating the quadrature squeezing of the intracavity

field e,(z,t), we concentrate here onwards on the quantum fluctuations alone of the various
quadratures. We first consider what the implications of the boundary connection relations (6)

are for the fluctuations. Since (_, t) and (_', t') are all real, these relations are formally the same

as those obeyed by any particular quadrature of e, and e_°= fields, including their X- and Y-

quadratures separately. Furthermore, the two fields (or their quadratures) on the right-hand side

(RHS) of each equation in (6) are uncorrelsted at any t. To see this, we note, for example, that

the e_*=(0, t) field entering the z = 0 mirror contributes to the e__=(/, t') field only after a time

t' - t ffi 2tic during which the former field makes a full round trip through the cavity. Thus,

e_ (0, t) is correlated wlth e_=(0, t-2t/c) which is not correlated with e_=(0, t), since the vacuum

field fluctuations axe essentially 6-correlated in time. In view of this lack of correlation, we may
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Fig. 2. The Parametric Amplification Process. The X-quadrature is amplified by

a given factor (taken to be 2 here) while the Y-quadrature is attenuated by the same

factor.

write for the quantum-mechanical variance of, say, the Y-quadrature of fields st the mirrors in

terms of the power reflection and transmission coefficients (R, T) mad (R', T') (with R = _2, etc.)

(_Y+(0,t) 2} = R(AY_(O,t) 2) + T(AY:'_(O,t)2);

<AY_(£,t) 2) = R' {AY+(t, t) _) + 7" (AYY'(t,t)_), (12)

while setting z - t in Eqs. (9) and z -- 0 in Eqs. (11) yields for the propagation of variances

through the medium

<AY+(t,t)2> = (AY+(0,t-t/c)_> e-2't; <AY_(O,t)2> = (AY_(t,t-I/c)'> e -2't. (13)

With the aid of Eqs. (12) and (13), we may express the retarded propagation of the Y+-variance

at z = 0 in one complete round trip as

(AY+(o,t)_) = R<_Y_(t,t-t/,)'> e-_"+ T(aY:'°(O,t)_)
e-2'tR [Pr <AY+(t,t - l/c)2> + T' (AY'_'_(t,t - t/c)2>]

+T <AY_.°_(O,t)2)

al_e -4't (AY+(O, t- 2t/c) 2) + T (AY._°'(O, t)2>

+RT',-_;(AyS.,(t,t - t/,)_).

(14)

39



PROPAGATE BACKWARDS

MIXING OF INPUT AND CAVITY

FIELDS AT z --0 MIRROR

t_.__
PROPAGATE FORWARDS :-
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Fig.3. Round Trip Evolutionof Fieldsand Their Variances.

The foregoingsequenceofmathematicM stepsinarrivingatthe round trippropagationofvariances

isshown diagrammaticallyin Fig.3 to bringout the underlyingphysicalpicture_

In steady state,the quantum statisticalpropertiesof the fielddo not change from one round

tripto the next. In thisIong-tlmelimit,suppressingthe time entryof each _ance in Eq. (14),

we get

(I- RR'e -_'t) ' (15)

a resultthatisuniformlyvalidforallvaluesof(R,T) and (R',T') pairs(with the obviousenergy-

conservationconstraints,R + T ffi]_ + 7" -- l). It isalsoworth noting that in the derivation

of (15),the only property of the input fieldsused was theirwhite-noise(6-correlated)character.

Thus, (15) appliesn0t Jusfto V_UUm-field inpu_s_butto arbitrary whlt_oise _npu_ _eids _ =_
In the g_'cavlty limit, R, R' _ 1, qt - 0, we recover the result of Colhtt and Gardiner

generalized to allow for arbitrary white-noise input fields at the two mirrors:

r +r' (Ay:.°(o,) (16)
(T + T') + 4qt

For vacuum-fieldinputsasexplicitlyindicatedinEq. (15),sincethe two input fieldsare statisti-

callyidentical(exceptfortheirdirectionofpropagation),we may write more simply

T + RT'e -_t)

where

(17)

= =
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Note that the calculation of the variance (_Y+(0) 2) of the X-quadrature of the intracavity is

entirely analogous and is given by Eq. (17) provided q is replaced by -q everywhere.
The degree of qua_lrature squeezing is the ratio (AY+(0) 2)/N,_ which is generally the factor

by which two input fields with the same quadrature variance, but not necessarily vacuum fields, get

squeezed on entering the cavity. Detailed discussions of this quantity in both textual and Kraphical

forms have been presented elsewhere, where its generalization to include arbitrax_" relative phase

between the two traveling components of the monochromatic pump has also been derived [5,6].

Having discussed the intracavity field, we now present the noise characteristics of the output
field. Like the former field, the latter field is strongly correlated with the input fields as well.

However, unlike the former, the output field quadratures can be easily subjected to a spectral

analysis by choosing a sufficiently na_mwband local oscillator field gad integrating long enough in

a balanced homodyne setup as was done in the original experiments [8]. We shall see that it is in

this spectral sense that the output field exhibits a very high degree of squeezing.
The boundaa'y connection of the output is similar to Eqs. (6). For example, the leftward-

traveling output field at the z -- 0 mirror is a linear superposition of the transmitted part of e_(0, t)

and the reflected part of e_'C(0, t). So any qu_rature of the output field, say its Y_-quadrature,

obeys the boundary connection formula

Yo,a(O, t) = t'Y_ (0, t) + _Y_'+'_(O,t). (18)

However, unlike the intracavity field, we must know the fun time dependence of Yo_t(0, t), not just

of its variance, before it can be spectrally analyzed. Equivalently, as (18) shows, we must know

how Y_(0,t) evolves in time. But, that is easy to write down over a complete round trip since we

know via Eqs. (9) and (11) how the intracavity field e_ interacts with the active medium in a

single pass through it, while Eqs. (6) tell us how the input fields e_.c leak into the cavity at the

z = 0 and z = t mirrors. The round trip evolution of Y_(0,t) turns out to be

Y_(O,t) = - 2t/c)- t - 2t/c) (19)
+ Pe-,tY'_'°Ct,t-t/c),

which could _o have been written down directly based on physical arguments presented below.

If Y_(0, t - 2l/c) is the Y-quadrature of the cavity field just before it is incident on the z = 0

mirror from the right then after that mirror reflection a fraction if it is reflected while a fraction

of the input field Y_'c(0, t - 21/c) is transmitted. The two waves propagate rightward through

the medium with their Y-quadratures attenuated by factor e -d. They are then reflected at the

mirror at z = I by factor -_ while a fraction t_ of the second input Yusc(0, t - I/c) is added to the

circulating wave. The net field then propagates a distance t leftward through the active medium,

with its Y-qua_irature attenuated further by e -# as a result, to become the net field, given by the

left-hand side of Eq. (19), x time I/c later.

A Fourier analysis of Eq. (19) is straightforward. We shall focus only on the central (zero-

detuning) frequency component since it has the largest noise reduction. Denoting the Fourier

transform of a function/'(0 by ](6_), we see that for 6w = 0, Eq. (19) yields

 _(o,01 - =
0),
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while Eq. (18)yields

?,=(0,0)= i?_(o,0)+_+ =(o,o).

By eliminating ?_(0,0) between these two rehttions and using the energy-conservation relation

_2 +/_ = 1, one may easily show that

?=,,CO, O) = (_ - _'_-_) Y'r'°(O'O) + ff'e-"?:'=(t, O)
(I-_c-_) ' (20)

whose varian_ is relatedto the sp_r__ce of (uncorrelated)input-fieldquadrstures.H we

assume thatthe inputfieldshave the same spectralquadraturevarianceat agiven _equency, such

as issurelytrue for vacuum-fieldinputsthen the spectralsqueezingof the output fieldat zero

detuning isby the factor

= +r,m',,,
(I - _Pe-_t) 2 (21)

Justas forthe cavityfield,the ratio(AXe,(0, 0)')/ _AXr" (0,0)')forthe X-quadrature isgiven

by replacingq by -q everywhere in relation(21).

It isworth noting that just below threshold_'e _L _ I, the X-quadrature of the output

fieldat the z = 0 mirror has infinitevariancein itscentralfrequency component, while the

correspondingY-quadrature spectralcomponent has a finitevmd_nce that depends on how large

the transmissionT' of the other mirroris.In particular,forT Sffi0 regardlessof the value of R

(or of T), the output Y-quadrature has zerospectralv_rianceat the linecenter.This isa very

surprisingresult,implying as itdoes thateven ina verylow -Q but single-endedcavitythe output

fieldisperfectlysqueezed inthe spectralsense,ifthe parametricgain ishigh enough to drivethe

oscillatorto itsoscillationthreshold.A more complete discussionof the output field,including

the bandwidth of the squeezingspectrum, may be found in Ref. [6].

5 Squeezing in the Presence of Pump Noise

In a real experiment, pump noise is inevitable. Typically, the pump field has both amplitude and

phase noisethat can be describedWellinclusicalterms Mone. For example, the pump amplitude

may have a snmll fluctuatingpiece,describedin Eq. (5) via a time dependent q,

q(t) -- qo + 6q(t), (22)

in which 5q(t) is an Ornstein-Uhlenbeck Gaussian process with zero mean and an exponentially

decaying two-time correlation

(Sq(t)i_q(t')) = a0re-r"-r'l. (23)

The pump phase noise,on the other hand, isultimatelylimitedby phase diffusionwhich iswell

describedby a classicaJWiener-Levy Gau_i_n random processwith zeromean wlue forthe time

derivativeof the diffusingphase,6_(t),and itstwo-time correlations:
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= 0; = wa(t t'). (24)

The constants 2F and 2D are the axnplitude and phase-noise contributions to the total pump
llnewidth.

Since detailed discussions of this problem have been presented elsewhere [6], we shall restrict

our derivations here to its relatively simple hut physically revealing aspects. To begin with, we

shall take the white-noise limit, r --. oo, for the mmplitude noise. In more precise terms, this is

the limit in which Ft/c _I, I.

Since q in Eqs. (5) and (8) is time dependent, the exponentials in Eqs. (9) and (II) have

integrals in their exponents. For exmmple, in Eq. (9b) one must replace

e-q_ _ e-_.-fo" 6,(,-.,Ic)a.

for a given statistical realization of 6q. This means that the Y-quadrature variance is down by
the factor

e-;_,, (e-, fo*,,(,-./c)_.): e-,,t+*,,o,c

in every single pass either leftward or rightward between the two mirrors. We used the familiar

result that for a Gaussian random variable z,

and the fact that when Fl/c _ I,

(e') = (25)

(_q(t) 5q(t')) __2ao6(t - t'), (26)

to obtain the preceding factor.
A recognition of the extra factor • 4°*z' by which the ]/-quadrature variance is altered when

the pump amplitude has a fluctuating piece immediately tells us that Eqs. (15) and (17) must

aiso be altered accordingly. Thus, for example, Eq. (17) takes the form

(av+(o),)= +
Since ao > O, the net effect of the _-correlated pump amplitude fluctuations is to merely reduce

the parametric attenuation of Y-quadrature fluctuations thereby leading to a smaller intracavity

squeezing.

Although we have not discussed the opposite, static pump amplitude noise limit, Ft/c ,I_ I,

it can be seen by physical arguments that for a given amplitude noise (dlq_) ½, the static case

compromises intracavity squeezing more dramatically than the white-noise case, for it is roughly

the zero-frequency Fourier component of the pump noise spectrum that controls the steady state

characteristics of the signal field. As the noise bandwidth r increases, a fixed amount of amplitude

noise is partitioned into more and more Fo,rier components, so that the zero-frequency component

(like any other) goes down.
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We turn now to the computation of spectral squeezing of the output field in the presence of a

6-correlated pump amplitude noise. This t_k is quite involved when compared with the derivation

of the preceding intracavity variance formula. One must begin with the fluctuating analog of (19)

which may be shown to be

Y_(0,t)= _'.-_'_-.('-t/°)Y_(O,t-2tlc)-i_'e-_o-.('-t/*)Y_-(o,t-2t/c) (27)
+ Pe-"(')Y__ (t,t- t/c),

in which

et

_(t) - Jo [qo+ tq(t - 4c)]dz. (2s)

A direct Fourier transform of Eq. (27) is not possible. We must compute first the two-time

correlationfunctions(Y_(O,t)Y_(O,t')),(Y_(O,t)Y_e(O,t')),and (Y_(O, t)Y_"e(O,t')) thatenter

the output autocorrelationfunction(Yo_t(O,t)Y.t(O,t'))via Eq. (18).A Fouriertransformof the

output correlationthen furnishesthe spectralvariance.To compute the former two correlation

functions,we solveEq. (27)forY_(0,t)iterativelyin terms of Y_ at successivelyearliertimes,

one differingfrom the next by the roundtriptime 2t/c:

inwhich

Y_(O,t) = -t_' _ (_')"e-'_"÷'O)Y._(O,t- 2t(n + 1)/c)
oo,,=o (29)

+ P _. (_')" e-'*.*,(')Y_(t,t - t(2n + 1)/c)
R--.--O

,),(t)-- [qo+ 6q(t- z/c)]dz. (30)

We may use the identity (25) and the white-noise approximation (26) to obtain the useful formula

_e_,).(,)e_,).,(,)) = eV{p+v,}_ %½[(s,g)+_s,)_,,_)+2(t.).s,).,)' (31)

_ e-(e+_')qOte_eJ(e+p'+2p<)'
.........

in which p< isthe strollerof (p,f).

When combined with the _-correlatednatureof the vacuum fields,relation(29)enablesone

to secure the needed correlationsfrom which the followingoutput quadrature autocorrelation

functionisobtained [6]:! i_ _

+ _ _.(_'_')"+"'d_(t-t'- 2(n-n')t/c)e-2("+"')_te 2°*d('>+3"<) (32)
e)_O n r _O

- P _ (,:P')"1_(t- t'- 2ntlc) + 5(t -t' + 2ntlc)le_,'_''+'°°"d +_(t- t')]
_mO

in which

(Y._'_ (0, t) v',*,.+(0, t')> = (Y"'__ (t,t) r'__ (t,t')> - C(_ (t - t').
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As before, we are only interested here in the central frequency component of the quadrature

spectrum. This is obtained from Eq. (32) by integrating it over (t - t') in the range (-co, co),
which is a trivial task due to the presence of a 6-function in every term_ The resulting infinite

sums are related to the geomteric series and can be carried out in closed form. The net result of

these straightforward steps is the following noise reduction fa_-tor at line center:

I I _ (_ -l- _Zt_e-2(qe-_c_) (I + _r'e-2(qe-a°©)t ) 2_ ]'(33)...q'_(O) : _ 1 + (1 - _27"_e-'(qe-_e_) (1 - _Pe -2(_-'0©_) 1 - PPe -_(_-_°_

When the pump fluctuations axe absent (ae = 0), this expression natur_y reduces to result (21).

In general, however, a graphical presentation of (33) is imperative for physical insights. This is

done in Fig. 4 for a symmetric c_vity (R = R'). It is no surprise that as the pump amplitude

fluctuations increase in strength, the amount of squeezing reduces for any fixed value of R (i.e.

along a vertical line on the figure). For a fixed fluctuation strength, on the other hand, the higher

its value the slower the squeezing increases, with increasing R, to its maximum vldue at oscillation

threshold.

A reduction of the amplitude-noise bandwidth, so that Fl/c is no longer large compared to

1, leads to reduced output squeezing for the sane reasons as for the intrac_vity field. It is

worth noting that amplitude noise, being essentially multiplicative in nature (see Eq. (5)), is

less important than pump phase noise which unavoidably couples the squeezed quadrature to the

highly fluctuating quadrature, thereby seriously undermining squeezing.

6 Pump Phase Fluctuations

Even the quietest pump, such as one genezated by a highly stable laser, has intrinsic random

phase diffusion arising from the purely quantum mechanica_ process of spontaneous emission.
This means that squeezing in the sub-harmonic signal field when measured relative to a fixed (or

independently fluctuating) phase will show a time-dependent behavior as both the squeezed and

unsqueezed orthogonal quadratures with phases slaved to the pump mix. However, if both the

local oscillator (LO) and pump are derived from the same laser, then the reference LO phase and

the phase of the ideally squeezed quadrature track each other. In spite of this phase tracking,

there is a residual effect on squeezing, due to the time dependence of the pump phase diffusion

I9], which we consider here.

In the presence of a finite 6_(1), as described by a Wiener-Levy Gaussian random process with

moments (24), Eq. (5) has q replaced by qe _(t), and the signal quadratures X±(z, t) and Y±(z, t)

are defined relative to the phase 6_b(t)/2:

= ½ + ;
Y±(z,t) = _ [e+(:,t)e -i'v'(')/2 - e-(z,t)elaV'(')/2]. (34)

These quadratures evolve according to the matrix equation
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Fig. 4. Squeezing Ofthe Central Frequency Component of the Output Field Qua_ra'

ture in a Symmetric Cavity. The full, dashed, and dotted curves represent values of
the fluctuation parameter aod equal to 0, 0.005, and 0.01, respectively, while the

roundtrip gain coefficient q0t is 0.05 in each case.
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in which the column vector Vi(z,t) b (Xi(=,t),Y±(=,t)) T and the cr's are the Pauli m_trices

(oi) (o ,) (i o)cr_= I 0 ; e_ = i 0 ; _s= 0 -I "

Although Eq. (35) is a first order equation, it is a matrix equation with the coefficient matrix

on the RI'IS at any time not committing with itself at another time. This renders the solution a

formal one in terms of time-ordered or path-ordered exponentials. The path-ordering (or time-

ordering) has however the advantage that successive path-ordered (or time ordered) exponentials

from one roundtrip to the next may he easily multiplied. One first combines the solution of Eq.

(35) with the boundary connections (9) to determine the single roundtrip evolution of V+(0, t)

to obtain a matrix analog of Eg. (19). Iterative processing of such equation ]ez_ to a formal

solution that can, via the simplicity of writing products of time (or path) ordered exponentials

with contiguous limits as single time (path) ordered exponentials over the entire time (or path)

interval, he expressed in the form

QO

V+(O,t) = _ (PF_)_C(0,2t, n;t)e2't""W _" (t- 2rig�c). (37)
,tffiO

In Eq. (37), W "'c is a column vector related to the quadratures of the two known input fields

and C(0, 2in; t), a path-ordered matrix exponential involving an integral over &_(t), represents the

residual effect of pump phase diffusion over signal noise.

In Ref. [6], solution (37) serves as the starting point for computing the various variances and

correlations needed for determining the steady-state intracavity quadrature variances and output-

field quadrature noise spectrum. Eq. (37) is sufficiently complex that & statistical averaging over

the phase noise 5_, in spite of its Ganssian and 6-correlated nature, cannot be exactly performed in

the involved integrals. One must settle for a series expansion of intracavity and output squeezing

in powers of the phase diffusion constant D, which has been determined to O(D 2) [6]. We refer

the interested reader to tha.t reference for mere details. It suf6ces here to state that pump phase

diffusion seems to be most important near threshold where the fluctuations in the X-quadrature

of the cavity field have a highly slowed relaxation rate.

7 Conclusions

We have presented here an analysis of squeezing in a degenerate parametric oscillator that lends

itself to an easy physical interpretation for the most part. For completeness, we have also summa-

rized the impact of pump amplitude and phase noises of sorts encountered in a real experiment

on the observed degrees of cavity and output squeezing. An exact analysis for the case of a finite

pump-phase diffusion noise 5_(t) is beset by the dlmculties of computing the statistical averages

of path-ordered integrals involving 5_(t).
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